Rogue Wave Software's tools and components are designed to increase the productivity of developers building applications that take advantage of parallel computing architectures.

Developing parallel, data-intensive applications is hard. We make it easier.

What do YOU need?
- Find performance and logic flaws in parallel code
- Perform sophisticated data analysis with math and statistical libraries
- Source code defect analysis with a scalable GUI debugger
- Pinpoint performance issues through memory and thread analysis
- Build Python-based numerical analysis prototypes that convert rapidly into production

Rogue Wave Software is the largest independent provider of cross-platform software development tools and embedded components for the next generation of HPC applications.
Rogue Wave Software is the largest independent provider of cross-platform software development tools and embedded components for the next generation of HPC applications. With a broad portfolio, Rogue Wave enables developers to increase productivity and harness the power of multicore computing while reducing the complexity of developing multi-processor and data-intensive applications.

PARALLEL ARCHITECTURES

TotalView®
TotalView is a scalable and intuitive debugger for parallel applications written in C, C++, and Fortran. Designed to improve developer productivity, TotalView simplifies and shortens the process of developing, debugging, and optimizing complex applications. TotalView provides a powerful combination of capabilities for pinpointing and fixing hard-to-find bugs, such as race conditions, memory leaks, and memory overruns. Providing developers the ability to step freely, both forwards and backwards, through program execution, TotalView's unique reverse debugging capabilities drastically reduce the amount of time invested in troubleshooting code. To help developers maximize hardware capabilities, TotalView also provides debugging support for NVIDIA® CUDA™, OpenACC®, and the Intel® Xeon® Phi™ coprocessor.

MemoryScape™
MemoryScape is an interactive, dynamic memory analysis and debugging tool that simplifies and reduces time spent on memory debugging for developers at all skill levels. MemoryScape is available as a standalone application or as an integral component of TotalView.

ThreadSpotter™
ThreadSpotter is a memory optimization tool that analyzes cache memory and thread communication in single and multicore systems. By pinpointing performance issues and providing specific guidance on how to correct them, ThreadSpotter increases program performance and improves developer productivity.

HIGH PERFORMANCE DATA ANALYTICS

IMSL® Numerical Libraries
IMSL Numerical Libraries are a robust and portable collection of embeddable math and statistical functions available in native C, C++, C#, Fortran, and Java™ that provide sophisticated analytics for high-performance, mission-critical applications. With IMSL, businesses and organizations reduce development time, realize a lower total cost of ownership, and improve the quality and maintainability of applications.

PyIMSL™
PyIMSL is a collection of Python wrappers for the math and statistical algorithms in the IMSL C Library. Developers can use PyIMSL to more quickly transform prototype work into production with less complexity, cost, and risk than using multiple tools.

PV-WAVE®
PV-WAVE, a sophisticated programming language and set of tools for data analysis and visualization, is designed for building rapid prototypes and production-ready applications.

ENTERPRISE C++ APPLICATIONS

SourcePro® C++
SourcePro C++ is a complete set of cross-platform, C++ development components, including tools and libraries for database, networked, and Internet-enabled applications. SourcePro reduces time to market, increases reliability, and prolongs application life.

Visualization for C++
Visualization for C++ is a collection of GUI components that allows programmers to greatly reduce development time and risk, while end users benefit from more responsive and intuitive information displays for better modeling, monitoring, and analyzing.